
UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 1

TCP-UDP-IP STACK 10G
MICROBLAZE-ZYNQ EXAMPLE DESIGN

Example design user guide

UG002

Version 1.0

December 04, 2021

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 2

Table of Contents

Introduction ...3

Example design source code download ..3

Firmware generation ..4

Firmware synoptic ..4

Theory of operations ..5

Producer – Consumer model ..7

Firmware generation steps ...9

Library generation ..9

Project generation ..9

SDK application project ...10

Firmware test menu ...10

Qt test bench interface ...12

Test examples ...13

TCP client test ...13

Client to Server transfer test ...13

Server to client transfer test ...15

TCP server test ..17

Server to client transfer test ...17

Client to server transfer test ...18

UDP transmitter test ...19

UDP receiver test ..20

TCP loop test ..21

UDP loop test ...22

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 3

Introduction

The purpose of this example design is to demonstrate the performance of the

Microblaze/Zynq Board Support Package (BSP) of the IPCTEK’s TCP/UDP/IP stack 10G FPGA

IP core. With the BSP, users have a socket-like C API of the whole Ethernet 10G TCP/UDP/IP

FPGA stack. Within several simple function calls, users can send/receive UDP datagrams or

open a TCP session and exchange data with the TCP peer. All hardware-dependent jobs are

abstracted from the user’s point of view. This is a perfect plug-and-play solution for remote-

control applications. Main characteristics of the IP core are given in the table below.

Parameter Value Unit

MAC MTU 9000 Bytes

Number of entries in the routing table 64

Number of TCP server (or client) 1

TCP TX buffer size 32 KBytes

TCP RX buffer size 32 KBytes

TCP out-of-order Handling Enable "TRUE"

Out-of-order reordering buffer size 32 KBytes

Number of UDP TX 1

Number of UDP RX 1

Table 1 - IP core's parameters

Example design source code download

In order to compile the example design we need to download the Vivado Hdl firmware, the

SDK bare-metal application and the Qt test bench source code. All the design source code

and an evaluation netlist can be requested by sending an e-mail to contact@ipctek.net

• Vivado Hdl firmware: this repository (ip_stack_10g/) contains necessary source code

and scripts to generate the FPGA firmware Vivado project.

• SDK bare-metal application project: the example design is running on a Microblaze-

based subsystem. The source code is in drivers/ folder.

• Qt-based test bench (optional): an UDP transceiver and a TCP server/client test

bench which can be run on a PC host to interact with the FPGA firmware. The source

code is in Qt/ folder.

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 4

Firmware generation

In this section we detail the step-by-step process in order to generate the FPGA firmware

used in the example design.

Firmware synoptic
The FPGA firmware synoptic is illustrated in the figure below. In the design, we implement a

Ten-Gigabit TCP/UDP/IP stack which will be running on Xilinx evaluation boards. We use the

Xilinx's 10G/25G Ethernet Subsystem IP serving as the Ethernet MAC along with the

PCS/PMA stack.

Figure 1 - FPGA firmware synoptic

GTH

Xilinx
10G/25G

Ethernet MAC
PCS/PMA
Duo Core

IPCTEK
Ten Gigabit
TCP/UDP/IP

Stack
(2 instances)

IPCTEK
Ethernet

Buffer
(2 instances)

Microblaze/Zynq
Sub-system

Data

AXI4 Lite

AXI UART

FPGA firmware

SFP+
Cage 0

SFP+
Trans-

ceiver 0

AXI BRAM
AXI

InterConnect

AXI4

GTH

SFP+
Cage 1

SFP+
Trans-

ceiver 1

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 5

The FPGA firmware is composed of following principal components.

• 10G Ethernet MAC: A Xilinx's 10G/25G Ethernet Subsystem is used. The IP is

configured with two cores in order to interface with two different SFP+ transceivers.

• IPCTEK's Ten-Gigabit TCP/UDP/IP stack: One TCP engine (can be switched between

server and client), one UDP transmitter and one UDP receiver are instantiated in the

IP core. The MAC MTU is 9000 bytes. The IP core is embedded in an AXI4-Lite

wrapper for an easy integration within a Microblaze/Zynq sub-system. Two instances

of the IP are implemented in order to have two different TCP/UDP/IP stacks.

• IPCTEK's Ethernet Buffer IP core: For the RX path, this IP buffers received TCP and

UDP data before writing the data into the BRAM memory. As for the TX path, the IP

reads transmitted data from the BRAM before sending them to the TCP/UDP/IP

Stack. The Ethernet Buffer IP can be seen as a data memory controller. The

Microblaze/Zynq can have access to the IP’s register space in order to control the TX

and RX data memory address and length.

• AXI4 BRAM: This IP serves as a TX/RX data memory for the whole system. This

memory buffers RX data (coming from the Ethernet Buffer IP) before they are read by

the Microblaze/Zynq. It also buffers TX data (coming from the Microblaze/Zynq)

before they are read by the Ethernet Buffer IP. In practice, this memory can also be

an external memory such as DDR3 or DDR4. In general, any memory with an AXI4

interface can be used.

• A Microblaze/Zynq sub-system to configure the whole system via AXI4-Lite interface.

An UART interface is also implemented in order to interact with the user. It also gets

access to the BRAM memory via an AXI Interconnect IP.

• The two SFP+ ports must be connected together (or to an Ethernet switch) in case a

loopback test is required.

Theory of operations
In this paragraph we describe the organization of the TX/RX data memory, which is the AXI

BRAM in this example design, as long as the mechanism of the TX and the RX processes.

The memory organization is illustrated in Figure 2. The memory is divided in to M zones,

where M is the number of Ethernet devices implemented in the system. In this example

design, there are 2 Ethernet devices corresponding to 2 physical SFP+ transceivers.

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 6

Figure 2 – TX/RX memory organization

Each memory zone described above is divided again in several sections which have the same

size. These sections are organized from the top to the bottom of the memory.

- One section for received UDP packets.

- N section for received TCP sessions, where N is the number of TCP sessions

implemented in the TCP/UDP/IP Stack.

- One section for transmitted UDP packets.

- One section for transmitted TCP segments.

The memory organization is initialized using the function ipc_eth_buf_set_default_params()

in the file ipc_fpga_eth_buf.c

The section size is defined by the member eth_buf_mem_section_len in the structure

eth_dev_init_param_t

There are several important points that are worth noting during the configuration of the

data memory.

- The memory section size must be larger than the Ethernet MTU. This is logic

because the memory section must be large enough to store at least one UDP packet

or one TCP segment.

- The memory must be large enough for all the TX and RX memory sections and all the

Ethernet devices present in the system.

- The system supports 32-bit memory address. However, the address 0xFFFFFFFF is

not usable. This limitation is due to the overflow problem when calculating the write

pointer low anchor value.

Memory
zone #0

Memory
zone #1

UDP RX

TCP RX
session #1

TCP RX
session #2

…

UDP TX

TCP TX

…

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 7

Failing to respect these points described above, the correct functioning of the system is not

guaranteed.

Producer – Consumer model
The TX and RX paths function according to a producer – consumer model. The data memory

is modeled as a circular buffer into which a producer writes data and from which a consumer

reads data. In order to keep track of buffer empty and full states, the producer and the

consumer share control signals such as the read pointer, read phase tag, write pointer, write

pointer low anchor and the write phase tag (when the read pointer or the write pointer

reaches the bottom of the memory, they return to the top of the memory and the

corresponding phase tag changes). The meaning of each control signal is as follow.

- Write pointer: the memory address up to which the data have been written. This is

the address into where a new data will be written by the producer.

- Write pointer low anchor: the memory address up to which the data are valid. When

the amount of free memory (from the write pointer to the bottom of the memory

zone) is not enough for a whole UDP packet (including the IPCTEK’s UDP pseudo

header) or a whole TCP segment (deduced from the MAC MTU), the producer uses

the write pointer low anchor to mark the actual write pointer position before

resetting the write pointer to the memory top position and changing the write phase

tag. This is because the DMA engine in the FPGA does not support wrapped address

and we do not want to fragment an UDP packet or a TCP segment into two DMA

transactions in order to maximize the system throughput.

- Write phase tag: the phase tag of the write operation. When the producer resets the

write pointer to the top of the memory zone, the write pointer low anchor is set and

the write phase tag is changed.

- Read pointer: the memory address up to which the data has been read. This address

is the next data address to be read by the consumer.

- Read phase tag: the phase tag of the read operation. When the consumer finishes

reading from the top of the memory to the write pointer low anchor, it comes back

to the top of the memory and changes the read phase tag.

The Figures below illustrate several situations encountered during a normal operation. This

is useful to understand the producer-consumer model.

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 8

Figure 3 – Memory section buffer empty. Write phase tag = Read phase tag, write pointer = read pointer

Figure 4 – There are three new entries in the memory section buffer

Figure 5 – The write pointer low anchor is set before resetting the write pointer and changing the write phase
tag. The number of free slots at the bottom of the memory is not enough for a whole packet

Write pointer

Read pointer

Write pointer low anchor

Memory bottom

Memory top

Write phase tag : 1 Read phase tag : 0

Producer Consumer

 New data

Read pointer

Write pointer

Memory bottom

Memory top

Write phase tag : 0 Read phase tag : 0

Producer Consumer

 New data

Read pointer Write pointer

Memory bottom

Memory top

Write phase tag : 0 Read phase tag : 0

Producer Consumer

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 9

Figure 6 – Memory full. Write phase tag != Read phase tag, write pointer = read pointer

Firmware generation steps

Library generation
Before generating the example project, different necessary IPs need to be compiled.

--- Tip ---

In Windows, open the cmd console then use subst command to create a virtual Disk pointing to the Vivado Hdl

root folder in order to avoid Windows's maximum path length limitation error. For example, to create a virtual

disk named T, tap the following in the cmd console.

subst T: <path_to_the_root_folder>

--

Open Vivado, cd into the /library folder, use the Vivado tcl console

cd T:/library

Run the script buildLib.tcl to compile the library, use the Vivado tcl console

source ./buildLib.tcl

When the library compilation is finished, we proceed to generate the example project.

Project generation
cd into the project folder /projects/tcp_udp_10g_microblaze_over_[boad_name]. E.g. for

the KCU105 board use the Vivado tcl console

cd T:/projects/tcp_udp_10g_microblaze_over_kcu105

Run the script system_project.tcl to generate the project, use the Vivado tcl console

source ./system_project.tcl

Write pointer Read pointer

Write pointer low anchor

Memory bottom

Memory top

Write phase tag : 1 Read phase tag : 0

Producer Consumer

 New data

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 10

After the script is finished loading the board design, run the synthesis then the

implementation and generate the bitstream. These processes take about one hour to finish

depending on the host PC.

Export the bitstream then launch the SDK. We proceed to create an SDK application project.

SDK application project
Create an application project based on the hardware that we have just exported from the

Vivado project.

The SDK application source code for the example design is located at

/noOs_drivers/ip_stack_10g/tcp_udp_10g_microblaze_over_[board_name]/src folder.

Import this folder into your SDK project.

--- Note---

Reconfigure the Linker Script to increase the stack size and the heap size to 32 KB for a stable application. In this

example design we have to allocate memory for large packets.

--

Program the board, plug the USB/UART cable into the evaluation board, open a console

application (e.g. Tera Term) then run the application. The UART baud rate is 115200 Hz.

Remember to check the “local echo” option in Tera Term in order to see user’s input

commands.

Firmware test menu
Users should find this UART console screen after launching the SDK application.

Figure 7 - Firmware UART console

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 11

Available commands for test are:

• udp_send command: use this command to send UDP packets from the evaluation

board to a destination. In this test the SFP+ port 0 is used.

• udp_receive command: use this command to prepare for receiving UDP packets. If

the predefined PRBS sequence is about to be received, the PRBS verification function

can be enabled to verify the data integrity. In this test the SFP+ port 0 is used.

• udp_loop command: use this command to send UDP packets from one SFP+ port to

the other port on the same evaluation board. A PRBS sequence is sent from one

TCP/UDP/IP stack, passing though the SFP+ transceivers and is received by the other

TCP/UDP/IP stack. A PRBS verification module is also activated in order to verify the

data integrity of the UDP packets. In this test both SFP+ port 0 and port 1 are used.

• tcp_send command: configure the 1st TCP/IP stack as either a TCP server or a TCP

client. After the connection was established, send a data stream to the TCP peer. In

this test the SFP+ port 0 is used.

• tcp_receive command: configure the 1st TCP/IP stack as either a TCP server or a TCP

client. After the connection was established, prepare for receiving a data stream

coming from the peer. If the predefined PRBS sequence is to be received, users can

activate the PRBS verification module in order to verify the data integrity.

Theoretically, as a TCP connection is guaranteed to be error-free, the data integrity

check should always pass. If the Qt-based TCP server/client given by the example

design is used, this data integrity check function is already implemented. This allows

to test the speed performance and to validate the correct functioning of the IP core.

In this test the SFP+ port 0 is used.

• tcp_loop command: use this command to test the TCP loop configuration. One IP

stack is configured as a TCP server, the other is configured as a TCP client. In this test

the connection between the TCP server and the TCP client will be established and a

PRBS sequence will be sent from the client to the server. At the server side, the PRBS

verification component is also activated to verify the data integrity of the TCP data

stream. Do not forget to physically connect the two SFP+ ports in your evaluation

board during this test. In this test both SFP+ port 0 and port 1 are used.

• quit command: use this command to quit the application.

--- Tip ---

When udp_loop or tcp_loop commands are used, loopback the SFP+ transceivers in your evaluation board, or

connect them to a 10G Ethernet switch.

--

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 12

Qt test bench interface

The Qt test bench is written with Qt Creator version 4.13.2 and Qt version 5.12.2. In the test

bench we implement a TCP Server, a TCP client and an UDP transmit/receive engine in order

to interact with the IP stack on the FPGA.

In the test bench we use Windows socket for the TCP server/client and the UDP transmitter.

However, we use npcap SDK to implement the UDP Receiver engine because of the poor

performance of the native socket.

--- Important Note---

The npcapsdk version 1.05 is included in the test bench source code. In order to use the library, user must install

the npcap on the host PC. By the time this document is written, the nmap version 7.92 has been installed. The

nmap installer also handles the npcap installation.

--

The test bench interface is shown in the figure below.

Figure 8 - Qt test bench interface

1. TCP server interface, used to test the FPGA TCP client mode.

2. TCP client interface, used to test the FPGA TCP server mode.

3. UDP transceiver interface, used to test the FPGA UDP Tx and Rx engines.

1 2

3 4

5

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 13

4. Test bench log, used to display useful messages during the test.

5. Select the speed. Select 10G Stack for this example design. This is used to correctly

configure the PRBS engine that matches with the one used in the Microblaze code.

Test examples

In this test examples, the SFP+ port 0 of the evaluation board is directly connected to an

Intel(R) 82599 10 Gigabit Network Connection PCIe card. The Qt test bench is running on a

Windows 10 host PC.

Configure the host PC Ethernet interface to static mode with the following information

• IP address: 10.10.1.7

• Netmask: 255.255.255.0

• Gateway: 10.10.1.1

TCP client test
In this test we use the Qt TCP server interface and the FPGA TCP/IP stack is configured to the

client mode.

Open the server by clicking to the Open Server button.

Wait until the "Server is listening." text is displayed on the Server Status.

--- Note---

The Windows firewall may ask for permission for the program to have access to the Ethernet interface. In this

case click Yes to give the permission.

--

The TCP server is now listening for a connection request. We proceed to prepare for a TCP

client on the FPGA.

Client to Server transfer test
In this example we will transfer 1000 segments of size 8960 bytes from the Microblaze client

to the Qt server. While receiving the data stream, the server also verifies the data integrity

of the stream.

Check the PRBS Verification check box to enable the verification option.

In the FPGA UART console, use the tcp_send command to send data to the server.

When asked for the server/client mode, input 0 to select the client mode.

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 14

When asked for the server address, input 10.10.1.7, which is the address of the Qt TCP

server.

When asked for the server port, input the port number configured in the Qt TCP Server

interface, by default it is 3110.

When asked for the client’s port number, input a number, e.g. 4444.

Upon success, the “Connected” text should be displayed at the Qt TCP server interface.

Several pieces of information concerning the server are also displayed on the UART screen.

When asked for the data mode, input 1 to select the PRBS mode.

When asked for the segment length, input 8960. It is noted that this is the maximum

segment length value, given that the MAC MTU is equal to 9000 bytes.

When asked for the number of segments, input 1000.

The screenshots of the UART console and the test bench interface when the transmission is

finished are shown in figures below.

Figure 9 - FPGA TCP Client. Client to server transfer, UART screen

--- Important Note---

Make sure to configure your network card to support the jumbo frame (or the extended mode with the packet

length larger than 9000 bytes).

If the segment length is configured not to be a multiple of 8, it is possible that the PRBS verification at the server

side is not reliable. This is because in the PRBS generation engine an 8-byte LFSR is used. At the server side, it is

possible that the network interface card pushes segments whose size is different from that of the client side.

Hence, it is better to configure a multiple-of-8 segment size at the transmitter.

--

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 15

Figure 10 - FPGA TCP Client. Client to server transfer, test bench screen

--- Note---

After each transmission using the tcp_send command, the PRBS generator of the Microblaze is resetted. Before

restarting another transmission, the PRBS generator in the test bench should also be resetted to the initial

value. Toggle the PRBS Verification checkbox to reset the PRBS engine.

--

Server to client transfer test
In this example the Qt test bench interface server will transfer 1000 segments of size 8960

bytes to the Microblaze/Zynq TCP client. While receiving the data stream, the client also

verifies the data integrity of the stream.

In the FPGA UART console, use the tcp_receive command to prepare for receiving data from

the server.

When asked for the server/client mode, input 0 to select the client mode.

When asked for the server address, input 10.10.1.7, which is the address of the Qt TCP

server.

When asked for the server port, input the port number configured in the Qt TCP Server

interface, by default it is 3110.

When asked for the client’s port number, input a number, e.g. 4444.

When asked for the segment length (in number of bytes), input 8960.

When asked for the number of segments expected to receive, input 1000.

When asked for the verification option, input 1 to enable the PRBS verification function.

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 16

In the Qt test bench interface, click on the button Send PRBS Data to begin sending data to

the client. Configure the corresponding numbers of segments and the segment length as

shown in the figure below.

Figure 11 - FPGA TCP Client. Server to client transfer parameters

The screenshots of the UART console and the Qt test bench interface when the transmission

is finished are shown in figures below.

Figure 12 - FPGA TCP Client. Server to client transfer, UART screen

Figure 13 - FPGA TCP Client. Server to client transfer, test bench screen

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 17

TCP server test
In this test the Microblaze/Zynq will configure a TCP server. We use the Qt test bench TCP

client to interact with this server.

Server to client transfer test
In this example test we will transfer 10000 segments of size 8960 bytes from the

Microblaze/Zynq server to the Qt test bench client.

Check the PRBS Verification checkbox in order to enable the data integrity check.

Use the tcp_send command to send a data stream to the Qt test bench.

When asked for the server/client mode, input 1 to select the server mode.

When asked for our port, input 4444 to match the “Server Port” valued configured in the Qt

test bench.

The Microblaze/Zynq server is waiting for a connection request, Click on the Connect to

Server button.

Wait until the "Connected." text is displayed in the Server Status label

When asked for the data mode, input 1 to configure PRBS data.

When asked for the segment length, input 8960.

When asked for the number of segments to be sent, input 10000.

The screenshots of the UART console and the test bench interface when the transmission is

finished are shown in figures below.

Figure 14 - FPGA TCP Server. Server to client transfer, UART screen

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 18

Figure 15 - FPGA TCP Server. Server to client transfer, test bench screen

Client to server transfer test
In this example test we prepare for sending 1000 segments of 8960 bytes from the Qt test

bench Client to the Microblaze/Zynq server. The PRBS Verification engine in the

Microblaze/Zynq is also enabled to verify the data integrity.

Use the tcp_receive command to prepare for the reception of the data stream.

When asked for the server/client mode, input 1 to select the server mode.

When asked for our port, input 4444 to match the “Server Port” valued configured in the Qt

test bench.

The Microblaze/Zynq server is waiting for a connection request, Click on the Connect to

Server button.

Wait until the "Connected." text is displayed in the Server Status label.

When asked for the segment length, input 8960.

When asked for the expected number of segments, input 1000.

When asked for the PRBS verification option, input 1 to enable this functionality.

Click on the button Send PRBS Data (on the TCP Client group) to send data to the

Microblaze/Zynq server.

The screenshots of the UART console and the test bench interface when the transmission is

finished are shown in figures below.

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 19

Figure 16 - FPGA TCP Server. Client to server transfer, UART screen

Figure 17 - FPGA TCP Server. Client to server transfer, test bench screen

UDP transmitter test
In this example test we use the FPGA UDP Tx engine to send 100000 packets of size 8960

bytes to the Qt test bench UDP receiver. The PRBS verification option is also enabled to

verify the data integrity of the received data.

Click on the button UDP Bind to bind the UDP socket to the corresponding address and

ports. The "Binding success." text should appear in the Server (virtual) status label.

Enable the PRBS verification option by checking the PRBS Verification checkbox.

Click on the Receive PRBS data button to prepare for receiving the data. Refer to the system

log for useful information. At this stage, the npcap is called to sniff for 100,000 UDP packets

whose destination port is equal to 3110.

Use the udp_send command to send data to the test bench virtual server.

When asked for the destination IP address, input 10.10.1.7.

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 20

When asked for the UDP source port, input for example 4444.

When asked for the UDP destination port, the user must input 3110 to match that of the

npcap packet filter.

When asked for the data mode, input 1 for PRBS data.

When asked for the packet length, input 8960.

When asked for the number of packets, input 100000.

The screenshots of the UART console and the Qt test bench interface when the transmission

is finished are shown in figures below.

Figure 18 - UDP TX test, UART screen

Figure 19 - UDP Tx test, test bench screen

UDP receiver test
In this example test we use the test bench interface to send 10 UDP packets of size 1024

bytes to the Microblaze/Zynq UDP receiver. The PRBS verification module in the

Microblaze/Zynq is also enabled in order to verify the data integrity.

Use the udp_receive command to prepare for receiving UDP packets.

When asked for the source IP address, input 10.10.1.7, which the IP address of the Qt test

bench UDP virtual server.

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 21

When asked for the UDP source port, input 3110.

When asked for the UDP destination port, input 4444.

When asked for the PRBS verification option, input 1 to enable the module.

When asked for the number of packets, input 10.

On the Qt test bench interface, click on the Send PRBS Data button to begin sending.

Configure to send 10 packets of size 1024 bytes then click on the OK button.

The screenshot of the UART console when the transmission is finished is shown in the figure

below.

Figure 20 - UDP Rx test, UART screen

--- Remark--

Why in this test do we send only 10 packets of 1024 bytes? This is because the Microblaze memory access is

extremely slow when compared to a 10G Ethernet full speed. If we send many packets to the Microblaze UDP

receiver, there would be a lot of dropped packets. And the PRBS verification at the receiver side is not reliable

any more. The Microblaze BSP includes also functions to retrieve statistic information about the TX and RX

paths. At the end of the UDP RX test, the number of UDP packets dropped by the interface (more precisely it is

the Ethernet Buffer IP which discards the packets in case the packets’ consumer (Microblaze in this case) is not

fast enough) is also displayed.

It is noted that this example design is for remote control applications where we control or supervise our system

from distance via the Microblaze. If high-speed data transfer or broadcasting applications are required, RTL

designs (UG001) would be more suitable.

--

TCP loop test
In this test the two SFP+ modules on the evaluation board should be connected together. In

this test one Ten-Gigabit TCP/UDP/IP instance serves as the TCP server, the other instance

serves as the TCP client.

After the connection is established, we send 1000 segments of size 8960 bytes from the

client to the server.

Use the tcp_loop command to begin the test.

When asked for the segment length, input 8960.

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 22

When asked for the number of segments to be sent, input 1000.

When asked for the PRBS verification option, input 1 to enable the module.

The screenshot of the UART console when the transmission is finished is shown in the figure

below.

Figure 21 - FPGA TCP Loop. Client to server transfer, UART screen

--- Note---

The design does not support the hot-plug functionality. After connecting the two SFP+ ports together, the

firmware needs to be restarted.

--

UDP loop test
In this test we use one Ten-Gigabit TCP/UDP/IP instance to send 1000 UDP packets of size

8960 bytes to the other instance.

Use the udp_loop command to begin the test.

When asked for the packet length, input 8960.

When asked for the number of packets to be sent, input 1000.

When asked for the PRBS verification option, input 1 to enable the module.

The screenshot of the UART console is shown in the following figure.

Figure 22 - UDP Loop test, UART screen

UG002 - TCP-UDP-IP Stack 10G – Microblaze-Zynq Example Design – Version 1.0 Page 23

End Of Document.

